Nanometer-scale III-V 3D MOSFETs

J. A. del Alamo, W. Lu, X. Zhao, D. Choi and A. Vardi

Microsystems Technology Laboratories Massachusetts Institute of Technology

ALE 2017

Denver, CO, July 15-18, 2017

Acknowledgements:

- Students and collaborators: D. Antoniadis, X. Cai, J. Lin
- Sponsors: Applied Materials, DTRA, KIST, Lam Research, Northrop Grumman, NSF, Samsung
- Labs at MIT: MTL, EBL

Moore's Law

Moore's Law = exponential increase in transistor density

Moore's Law

How far can Si support Moore's Law?

The problem:

Transistor scaling → Voltage scaling → Performance suffers

Supply voltage:

Transistor current density:

What can we do about this?

Moore's Law: it's all about MOSFET scaling

1. New device structures with improved scalability:

New materials with improved transport characteristics:
 n-channel: Si → Strained Si → SiGe → InGaAs
 p-channel: Si → Strained Si → SiGe → Ge → InGaSb

Planar Si and InGaAs MOSFET Benchmark

n-MOSFETs in Intel's nodes at nominal voltage

Comparisons always fraught with danger...

- Recent rapid progress thanks to ALD gate oxide
- Performance exceeds Si

Bottom-up InGaAs FinFETs

InGaAs FinFETs @ MIT

Key enabling technologies: BCl₃/SiCl₄/Ar RIE + digital etch

- Sub-10 nm fin width
- Aspect ratio > 20
- Vertical sidewalls

Vardi, DRC 2014, EDL 2015, IEDM 2015

InGaAs FinFETs @ MIT

Si-compatible process

Vardi, VLSI Tech 2016 Vardi, EDL 2016

- Contact-first, gate-last process
- Fin etch mask left in place → <u>double-gate MOSFET</u>

Most aggressively scaled FinFET

 W_{f} =7 nm, L_{g} =30 nm, H_{c} =40 nm (AR=5.7), EOT=0.6 nm:

At V_{DS} =0.5 V:

- g_m=900 μS/μm
- R_{on} =320 Ω .µm
 - S_{sat}=100 mV/dec

Vardi, EDL 2016

InGaAs FinFET benchmarking

- First InGaAs FinFETs with W_f<10 nm
- Doubled g_m over earlier InGaAs FinFETs
- Short of Si FinFETs \rightarrow sidewall quality?

Vertical nanowire MOSFET: ultimate scalable transistor

Vertical NW MOSFET:

 \rightarrow uncouples footprint scaling from L_g, L_{spacer}, and L_c scaling

InGaAs Vertical Nanowires @ MIT

Key enabling technologies:

- $RIE = BCI_3/SiCI_4/Ar$ chemistry
- Digital Etch (DE) =
 self-limiting O₂ plasma oxidation + H₂SO₄ or HCl oxide removal
- Radial etch rate=1 nm/cycle
- Sub-20 nm NW diameter
- Aspect ratio > 10
- Smooth sidewalls

Zhao, IEDM 2013 Zhao, EDL 2014 Zhao, IEDM 2014

InGaAs VNW-MOSFETs by top-down approach @ MIT

Top-down approach: flexible and manufacturable

NW-MOSFET I-V characteristics: D=40 nm

Single nanowire MOSFET:

- L_{ch}= 80 nm
- $3 \text{ nm Al}_2\text{O}_3 \text{ (EOT = 1.5 nm)}$
- $g_{m,pk}$ =720 µS/µm @ V_{DS}=0.5 V
- S_{lin}=70 mV/dec, S_{sat}=80 mV/dec
- DIBL=88 mV/V

Benchmark with Si/Ge VNW MOSFETs

Peak g_m of InGaAs (V_{DS} =0.5 V), Si and Ge VNW MOSFETs

- InGaAs competitive with Si
- Need to demonstrate VNW MOSFETs with D<10 nm

InGaAs VNW Mechanical Stability for D<10 nm

8 nm InGaAs VNWs after 7 DE cycles:

8 nm InGaAs VNWs: Yield = 0%

Difficult to reach 10 nm VNW diameter due to breakage

InGaAs VNW Mechanical Stability for D<10 nm

Difficult to reach 10 nm VNW diameter due to breakage

8 nm InGaAs VNWs: Yield = 0%

Water-based acid is problem:

Surface tension (mN/m):

- Water: 72
- Methanol: 22
- IPA: 23

Solution: alcohol-based digital etch

Alcohol-Based Digital Etch

8 nm InGaAs VNWs after 7 DE cycles:

Lu, EDL 2017

10% HCl in Dl water Yield = 0% 10% HCl in IPA Yield = 97%

Radial etch rate: 1.0 nm/cycle

Radial etch rate: 1.0 nm/cycle

Alcohol-based DE enables D < 10 nm

D=5.5 nm VNW arrays

10% H₂SO₄ in methanol

90% yield

- H₂SO₄:methanol yields 90% at D=6 nm!
- Viscosity matters: methanol (0.54 cP) vs. IPA (2.0 cP)

InGaAs Digital Etch

First demonstration of D=5 nm diameter InGaAs VNW (Aspect Ratio > 40)

InGaAs Vertical Nanowires on Si by direct growth

Riel, IEDM 2012

Vertical nanowire MOSFET for 5 nm node

30% area reduction in 6T-SRAM 19% area reduction in 32 bit multiplier

Vertical NW:

→ power, performance and area gains w.r.t. Lateral NW or FinFET

Conclusions

- Great recent progress on planar, fin and nanowire InGaAs MOSFETs
- 2. Device performance still lacking for 3D architecture designs
- 3. III-V Vertical-Nanowire MOSFETs: most likely architecture for future integration with Si
- 4. Many, MANY issues to work out:

sub-10 nm fin/nanowire fabrication, self-aligned contacts, device asymmetry, introduction of mechanical stress, V_T control, sidewall roughness, device variability, BTBT and parasitic HBT gain, oxide trapping, self-heating, reliability, NW survivability, co-integration on n- and p-channel devices on Si, interface states, metal routing, contact resistance < 10° Ω .cm², off-state leakage, TDDB, etc...